OPINION, SCIENCE, Uncategorized

Los Simpson y las matemáticas

Emma Sánchez Calatayud S6 ES

Los Simpson y las matemáticas es un libro publicado en noviembre de 2013 y escrito por Simon Singh, autor más conocido por su libro escrito previamente El Enigma de Fermat.  El libro nos describe el universo matemático de la serie de animación Los Simpson. En la serie se hacen continuas referencias a las ciencias básicas así como también a personajes científicos de renombre; esto se debe a que parte de sus guionistas son licenciados y doctorados en matemáticas, física e informática.

El libro no solo habla de Los Simpson sino también hace una mención a Futurama, otra serie escrita y producida por algunos miembros de la producción de Los Simpson, (a la que Singh dedica los últimos cuatro capítulos). El libro me ha ayudado a descubrir un universo matemático en Springfield, (ciudad en la que reside la familia de los Simpson y en las que se lleva a cabo la mayor parte de los capítulos), que desconocía en gran parte. El libro está bien escrito y su lectura es ágil, aunque hay un capítulo sobre béisbol que debido a mi ignorancia hacia ese deporte se me hizo un poco pesado de leer. El autor hace referencias a los nerds y geeks en múltiples capítulos. En los cuales, además, da detalles sobre la vida de los guionistas y sus experiencias como geeks. Entre algunos guionistas de la primera temporada, por ejemplo, se encuentran incluidos dos nerds, Mike Reiss y Al Jean, (ambos son matemáticos que estudiaron en la Universidad de Harvard), el autor nos cuenta cómo terminaron siendo los guionistas del primer capítulo del libro y que apenas un par de años más tarde se convirtieron en productores ejecutivos de la serie.

Muchos de los guiños matemáticos que Matt Groening ofrece son instantáneos y discretos, por eso son difíciles de ver y de interpretar sobre todo si no se está enterado de esos temas. Así que el libro de Singh está dedicado a desenterrar y explicar algunos de esos términos.

En la primera escena del primer capítulo, por ejemplo, que se titula Bart, el genio, Maggie la hija más pequeña de la familia Simpson construye la frase “EMCSQU” con una torre de cubos que contienen letras. Esa expresión corresponde a una de las ecuaciones matemáticas más famosas que tiene la ciencia, E=m·c² (SQU=squared, lo que en inglés quiere decir “al cuadrado”).

En el último capítulo se habla sobre el episodio El prisionero de Benda de Futurama, en ese episodio aparece una pizarra en la que el personaje Sweet escribe la demostración de un teorema sobre grupos de permutaciones, el cual es necesario para resolver la trama y que cada personaje vuelva a su cuerpo original. El teorema que se presenta es dicha pizarra fue demostrado por unos de los guionistas (además de matemático) de la serie, Ken Keeler, se presentó como parte del guión. Después de eso Keeler no publicó ningún artículo al respecto.

Los Simpson y las matemáticas es un libro que recomiendo a todos que lean, sobre todo, si son amantes de las matemáticas o de los Simpson o si quieren adentrarse dentro de las matemáticas como disciplina de manera entretenida y amena. Además incluye chistes y anécdotas divertidas con explicaciones detalladas para aquellas personas que no posean un nivel elevado de matemáticas.

Preguntas como, ¿Por qué en el episodio Marge, Homer y el deporte en pareja aparecen en la pantalla del estadio los números 8191, 8128 y 8208? ¿Es infinito más que infinito más infinito, o infinito elevado a infinito? ¿Qué pasó cuando Warren Buffet trató de engañar a Bill Gates con unos dados no transitivos? ¿De qué iba el primer artículo científico de Bill Gates, publicado en Discrete Mathematics? ¿Qué son los números vampiro, los perfectos y los números narcisistas? ¿De dónde viene el término Google? ¿Son los números primos infinitos realmente? ¿Cuál es la “conjetura del espantapájaros” que aparece al final del episodio El mago de Oz, la cual Homer recita al final? Estas y muchas otras preguntas están contestadas en el libro. ¿Te lo vas a perder?

Advertisements
SCHOOLTRIPS, SCIENCE, Uncategorized

Excursión Paseo Matemático

IMG-20180410-WA0004El pasado martes 10 de abril los alumnos de 5º de matemáticas seis periodos de la sección francesa y española fuimos al centro de Alicante. El recorrido estaba basado en unos trabajos que habíamos hecho anteriormente en esta asignatura, por lo que seleccionamos uno y pasamos toda la mañana recorriéndolo y completando las actividades que nos proponía. Entre ellas se encontraba visitar el MACA y el Museo de Aguas de Alicante.

Comenzamos nuestro tour en la parada de metro Mercado, donde nos encontramos todos a las 9:30, aunque algunos llegaron con retraso.  Desde ahí, fuimos andando hasta la Plaza del Ayuntamiento donde tuvimos tiempo mientras esperábamos al guía de contestar algunos problemas incluidos en el trabajo de nuestros compañeros.

El guía nos llevó hasta el Museo de Aguas de Alicante, mientras nos explicaba aspectos históricos relacionados con el abastecimiento del agua en las distintas partes de Alicante por las que pasábamos. En el museo aprendimos muchas cosas interesantes sobre este tema de las que no se habla mucho. También nos explicó adónde va el agua sucia que sale de nuestras casas, lo cual es bastante curioso. Vimos algunos proyectos nuevos que se han desarrollado para reducir el consumo de agua o cuidar las tuberías de una forma más eficiente.

Al acabar la visita, nos dirigimos al MACA, donde también tuvimos una guía, que nos explicó muchas cosas sobre Eusebio Sempere, un gran escultor y pintor alicantino. Allí está expuesta una gran parte de su obra, y pudimos apreciar las ilusiones ópticas que creaban sus esculturas o móviles.

Este fue el final de nuestra excursión, y mientras algunos volvieron al colegio, otros se quedaron a comer en el centro.

INFORMATION, SCIENCE

Bitcoin and Blockchain: building a better future

blockchain

Ever since the financial industry crashed in 2008, distrust and resentment towards banks, multinational companies, and government institutions have been rising across the globe. These establishments are seen by many as incredibly powerful and even, to some extent, corrupt. The reason for their ever-growing influence over many industries is the result of a lack of a better option than using their services for trade. But what if there was a way to cut out these middlemen and create a new system in which they weren’t necessary? What if, instead of having to rely on multinational banks or companies as trade intermediates, one could use a system which had trust built into it and would provide the same services but more efficiently and at a cheaper cost? What if there was a way to disrupt these extremely powerful industries? Well, now there is, and it’s in the form of a system called the Blockchain.

The main application of blockchain in today’s society is for cryptocurrencies – the most well-known of these being Bitcoin (BTC) and Ethereum (ETH). In 2008, right after Wall Street crashed and public trust for the American Federal Reserve was at an all-time low, a mysterious document called the white paper was released. It was written by an anonymous person, or group of people, who called themselves Satoshi Nakamoto, and in it the ideas for a new financial system which was to be built on the blockchain were discussed.

So, what is the blockchain and how does it work?

In simple terms, blockchain is a continuously updated record of who holds what. This record is called a ledger, and it is open to everyone and can be viewed by anyone who wishes to do so. This means that anyone can see when an asset or a service is transferred onto blockchain. It uses cryptography – a very advanced mathematical equation – to guarantee security. It operates through a decentralized peer-to-peer  system, which works through millions of computers all across the world rather than through one central authority. These computers that allow blockchain to function are called miners, and they do so through competing to solve difficult mathematical problems related to how the transactions should be put together. The solutions to these problems, which are called blocks, hold 10 minutes’ worth of transactions in them, and when the computers have figured out how to put them together, the problem is solved and a block is created. This block is thereafter put into a chain together with all the other blocks that have ever been created, hence the name. To incentivise people to use their computers as miners, whenever a new block is created, the miners are rewarded using cryptocurrency. For a transaction to go through, it must be verified by the network of miners, so if a block has been tampered with, it is rejected by the rest of the system. Due to this and the fact that all the blocks are connected, to alter the blockchain, one would need to alter all the blocks that have ever been created (which, depending on the blockchain, can be more than 100,000 blocks), not to mention every computer which has ever played a part in creating a block, keeping mind that these are all using the highest level of cryptography. Simply put: it’s practically impossible to hack.

As mentioned, Bitcoin was the first system as well as the first cryptocurrency to ever use the blockchain. So what are some of its features, and what are the reasons behind the massive interest it is generating from both investors and individuals? Bitcoin is a currency unlike any other, not only because it is solely virtual but also because it isn’t regulated through a Central Bank (and in turn the government), but rather through the blockchain (in other words, by the users of it). As previously explained, Bitcoin and other cryptocurrencies are created through the miners putting together transactions and creating blocks, guaranteeing a constant creation of new Bitcoin. Therefore, the more Bitcoin traded, the more blocks will be created by the miners and the more of it will be produced. Furthermore, it is very similar to gold in the sense that there is a limited supply of it – 21 million BTC. However, Bitcoin can be divided into smaller and smaller units to facilitate the needs of the Economy.

To trade Bitcoin, one must create a wallet – an address which only you have access to. Through this wallet and the advanced cryptography used in the system, the user is ensured that the Bitcoin they send reach the intended person and that the money they are expecting to obtain reaches them as well.

So, what is it that is so exciting about these different technologies, and why is there so much media coverage about Bitcoin, cryptocurrencies, and the blockchain?

Well, when it comes to Bitcoin, many people are looking to it as it provides a new form of currency which is decentralised and regulated by its users rather than through a centralised, powerful bank. This aspect is key, as it builds trust into the system and ensures that people have the right to control their own money, which they don’t when using a centralised currency. Nevertheless, being decentralised has its downsides: Bitcoin is currently facing scaling issues regarding how many transactions can be made on its blockchain per second. Nevertheless, the virtual currency is gaining momentum and is at time of writing worth 9000€ (meaning 1 BTC = 9000), which is incredible considering that it was only valued at 3000 in September 2017. However, one could say that it’s hit somewhat of a rough patch seeing as it was valued 16400  in December 2017. It needs to be said that the cryptocurrency market is rather unstable and is prone to huge short-term price changes, with price changes of thousands of euros being commonplace.

Moreover, Bitcoin is easy to join. Setting up a wallet is simple and only takes a few days (depending on which website you use) and trading is quite straightforward, with it generally taking less than an hour to send Bitcoin across the world. Bitcoin can also be used as a trustworthy alternative as a store of value for people living in crisis countries, such as Venezuela, which is affected by hyperinflation and where people cannot rely on the national currency nor the Central Bank. In spite of what you may think due to how much coverage it receives, Bitcoin isn’t the only cryptocurrency out there. In fact, there are over 1,000 of them, with the largest being Bitcoin, Ethereum, Ripple and Litecoin. They all have different attributes and uses, but they use the same technology (blockchain) as the basis for their currencies.

While cryptocurrencies are an exciting technology which undoubtedly will have a large effect on the financial industry and our global society in the coming decades, its uses and applications are far more limited than its underlying system: the blockchain. As Don Tapscott, a Canadian business executive who is one of the people at the forefront in the industry, explained in his TED talk, our current internet is the “internet of information”, in which copies of originals are shared (for example when sending a PowerPoint or uploading a video to YouTube). However, this doesn’t work well with assets: one cannot send a copy of 10€ and still have that same 10€ as an original (something called the double-spend problem). The inability to solve this issue through the internet of information is what has been keeping us reliant on middlemen such as banks to transfer money and other assets. These intermediaries’ services are expensive to use and, since they are centralised, they are prone to hacks and other attacks. Moreover, looking at banks, transactions are only possible if the individuals have enough money to create a bank account, which already restricts a huge part of the global population from taking part in the financial system as they may not have the money to do so. Other than being slow and taking large percentages of the transferred money, they also capture our data, which can undermine our privacy. Furthermore, as we are reliant on them to transfer value, they don’t have to face any heavy repercussions if they don’t treat their customers fairly. As Tapscott put it, these intermediaries have “appropriated the largesse of the digital age asymmetrically”, essentially meaning that they have been able to profit and benefit from the internet of information while others haven’t due to the institutions in place – something he claims can be seen through growing social inequalities.

So, what can we do so that we all can reap the benefits of the internet? How can we transfer value in other ways than through these influential institutions? This is where the blockchain comes in. As previously mentioned, the blockchain cannot only be used to transfer value in the form of money. Anything of value can be transacted securely on it, whether that be music, art, or shares. It ensures fair compensation for creators of intellectual property because the system can prove that they are the creators of it, and it cuts out the middle men. This means that e.g. music artists will be able to receive all or most of the money from the music they sell on the system, instead of big label companies taking sometimes more than 90% of their revenue. Because the blockchain is auditable and holds a truth which is verified by its network, it cannot be manipulated in favor of any group or individual who claims to own an asset or product which they don’t. In other words, it holds an immutable truth. For example, if someone claims something of yours, the system is able to prove that you are the rightful owner of that possession or asset and no one would be able to say otherwise, because the blockchain is incorruptible. That’s the beauty of it. This would, for example, enable people in poorer nations or dictatorships to have the security of knowing that neither the state nor powerful companies can illegally seize their land or any other valuable belonging of theirs as they have proof that it is theirs.

So why should you care about all this? Although there is no telling what blockchain technology and cryptocurrencies hold for us in the future, it is a new system in which power and wealth creation is democratised and is more accessible for the global population, without excluding minorities. It holds vast promises and is likely to have a big, if not a bigger impact on our lives than the internet did (in fact, some are comparing Blockchain’s position today to the internet’s position in 1993 when it was becoming adapted by more and more people). However, as we know, in the early 90’s no one would have predicted such advanced and powerful systems as Google, Amazon, or Alibaba to come about using only the internet. In the same way, we have very little clue of how the blockchain will turn out and what it will be used for, but in the coming years we will undoubtedly be seeing immense innovation and new ideas within this field which may be as impactful as the internet of information.

We don’t know what applications the blockchain has, or what effects cryptocurrencies will have on our economies or day-to-day lives. We are still in the “Wild West” of this technological breakthrough and we do not yet know what lies ahead of us. What we do know, however, is that things are changing in a similar way they did in the 90s, and that it will hopefully, once again, be for the better.

 

Credits to Vidae Önnerfors for the help!

Thomas Humphreys, 7EN

SCIENCE, Uncategorized

5 innovadores menores de 35 años

Javier Jiménez

Javier Jiménez con tan solo 34 años ha creado un dispositivo llamado Neosonics que diagnostica la meningitis infantil de manera rápida y sin necesidad de punzar, que es lo que más asusta a los niños. Este dispositivo, que es como un ‘boli gordo’ puede salvar muchas vidas en zonas con bajos recursos como África. Este aparato toma una imagen de ultrasonidos de alta resolución del líquido cerebroespinal, esto lo convierte en una herramienta rápida y precisa.

 

Svenja Hinderer

Svenja Hinderer tiene 32 años y es alemana. Ha desarrollado una válvula cardíaca artificial que incita al cuerpo a regenerar una válvula propia. Esto evita que niños sean sometidos a numerosas operaciones. Funciona con un material que incita al cuerpo a reconstruir una matriz extracelular propia.

 

Viktor Adalsteinsson

Viktor Adalsteinsson tiene 29 años y tiene un laboratorio en  el instituto Broad de Cambridge.

Ha implementado un sistema que escanea nuestra sangre en busca de ADN tumoral. Con un análisis de sangre se predice qué pacientes de cáncer van a recaer.

 

Simone Biles

Simone Biles es una gimnasta atlética americana que con tan solo 20 años ha ganado 3 medallas de oro en los Juegos Olímpicos de Río de Janeiro en 2016. Es la única gimnasta en ser campeona del mundo general individual tres veces de forma consecutiva (2013, 2014 y 2015).

 

James Charles

James Charles tiene 18 años. En 2015 se creó su cuenta de Instagram, que cuenta ahora mismo con más de 2.7 millones de seguidores, para “inspirar confianza en uno mismo”. Ha sido el primer embajador de la marca COVERGIRL. Este joven es un claro ejemplo que rompe los moldes sin temor a expresarse, luchando por lo que cree y define el concepto de belleza.

 

Beatriz Carrilho Uriarte y Julieta Tol Salinero

EVENTS, SCIENCE

Women in science

On the 8th of February four women from the University of Alicante came to the school to give a presentation about ‘women in science’ to celebrate the “Día Internacional de la mujer y la niña en la Ciencia” (actually on the 11th of February). For the 1st and 2nd period all students from secondary went to the Salon de Actos for the presentation and a debate. The presentation started off with a general introduction about women’s role in science. Then they went on to give specific examples of female scientists such as Marie Curie and Rosalind Franklin, who made crucial discoveries and inventions in the name of science.

The presentation was very well organised and the presenters kept the audience engaged by playing little games where we would have to clap our hands or scream ‘ah’ depending on which category (exact science or social science) we thought various subjects were classified in. They spoke about the differences and inequalities between men and women in science and about how for many years girls have been told that sciences are for boys and that girls should do things like art and music.

Gender equality and empowering women/girls will have an essential impact not only to economic development but also to progress towards the goals and targets of the 2030 Agenda for Sustainable Development. The main message they wanted to transmit was to raise awareness about the difference between men and women in science. According to statistics, less than 30% of the world’s researchers are women.

Towards the end of the presentation we conducted an experiment. The goal was to light up a rod by making a human circuit for the electricity to be conducted right back to the other side of the rod. We all had to stand up and hold hands (which was very awkward when you didn’t know the person next to you). It took about ten minutes and a lot of confusion before we were fully connected, and the rod lit up.

Overall, it was a great learning experience and I would definitely attend another one of these talks again.

SCIENCE, Uncategorized

Land Art

Historia y explicación

Land Art, o también llamado Earth Art o Earthwork es una expresión creada por el artista Robert Smithson en Estados Unidos en los años 60 y 70.

Es una corriente que utiliza los materiales y el paisaje natural como base para sus creaciones. La mayoría de obras de Land Art son provisionales o dejadas a merced de los elementos naturales, como la lluvia, la erosión, el viento cualquier cambio en el entorno.

El movimiento busca sacar el arte de los museos y de un contexto normal. El propósito es la conexión establecida entre obra de arte y el paisaje en el que se encuentra.

Se comenzó a crear Land Art para poder criticar la artificialidad y la comercialización del arte que terminó siendo popular durante su periodo.

Materiales

Se construye generalmente con materiales tales como piedra, roca, ramas, agua. Además otros elementos naturales, como pigmentos, cuerdas y metal son también frecuentemente empleados.

Hannsjörg Voth

Comenzó como carpintero aunque abandonó este oficio tras un viaje a Italia, Turquía, Irán y Marruecos donde dibujó y utilizó acuarelas por primera vez. En los años de 1962 a 1966 estudia pintura y diseño gráfico en la Universidad de Bremen. En 1968 empieza a trabajar en diseño gráfico, con el dibujo y la pintura. En 1970 dio comienzo a la etapa del Land Art (obras de esa década escaleras, círculos y embarcaciones). En 1976 creó el llamado Platz der Macht.

Con Reise ins Meer (1978) viajó a través de Alemania y los Países Bajos. En su viaje transportaba una momia en una balsa de madera surcando el río Rin. Aunque su éxito duró sólo 9 días, ya que la momia se prendió fuego cuando alcanzó mar abierto.

Das Boot aus Stein (1978-1982) era una estructura piramidal de madera que se instaló en IJsselmeer. Voth se mudó a la pirámide en abril de 1981, con intención de permanecer allí durante un año pero el invierno de 1981 a 1982 se complicó y a finales de noviembre tuvo que abandonar la pirámide. El 27 de enero de 1982, la pirámide fue arrancada de su base quedando a la deriva en IJsselmeer.

El Scheitelhaltung (1992) es una estructura de granito que marca la línea de la vertiente del agua en el canal Rin-Meno-Danubio.

La escalera celeste

Obra que mide 23m y es una escalera que se eleva al cielo. Se encuentra en el Sahara, en Marruecos. El mensaje de esta obra es la trascendencia, y que hay que tomar conciencia de que todos somos efímeros. El autor quiso reflejar una similitud entre la escalera y los hombres ya que ambos (según él) se elevan al cielo siendo polvo. Tiene funciones muy prácticas en el desierto: los nómadas la usan para ver si va a llover, ver si otros nómadas se han instalado en la zona, ver pastos y protegerse del sol bajo su sombra.

Imagen1

Ciudad de Orion

Esta obra situado en el desierto del Sahara, Marruecos representa la constelación tridimensional de Orion según un poema sumerio-babilónico. Es un vínculo con la historia de la voluntad humana para conectar el Cielo con la Tierra.

Son siete torres de observación de hasta 16 metros de altura construidas en arcilla estampada que representan cada una de las siete estrellas de Orion.

Imagen2

Espiral de Oro

Espiral logarítmica asociada a las propiedades geométricas del rectángulo dorado, cuya razón de crecimiento es representada con Φ. Esta espiral aparece en diversas figuras de la naturaleza, como en plantas o galaxias espirales y en el arte. La espiral de Fibonacci es una de las muchas aproximaciones a la espiral dorada.

Imagen3

Emma Sánchez, Marta Laporta, Paula Requena y Mara Van Viliet.